On Complete Convergence in the Law of Large Numbers for Subsequences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

on the convergence rate of the law of large numbers for sums of dependent random variables

in this paper, we generalize some results of chandra and goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). furthermore, we give baum and katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Law of large numbers for increasing subsequences of random permutations

Let the random variable Zn,k denote the number of increasing subsequences of length k in a random permutation from Sn, the symmetric group of permutations of {1, ..., n}. We show that V ar(Zn,kn ) = o((EZn,kn ) ) as n → ∞ if and only if kn = o(n 2 5 ). In particular then, the weak law of large numbers holds for Zn,kn if kn = o(n 2 5 ); that is, lim n→∞ Zn,kn EZn,kn = 1, in probability. We also ...

متن کامل

A Note on the Strong Law of Large Numbers

Petrov (1996) proved the connection between general moment conditions and the applicability of the strong law of large numbers to a sequence of pairwise independent and identically distributed random variables. This note examines this connection to a sequence of pairwise negative quadrant dependent (NQD) and identically distributed random variables. As a consequence of the main theorem ...

متن کامل

Complete Convergence and Weak Law of Large Numbers for ρ-Mixing Sequences of Random Variables

  ; 1 X i  i is a strictly stationary Gaussian sequence which has a bounded positive every t, then 1 1 1 m M        ; 1 n X n  . Thus, is a  -mixing sequence.  -mixing is similar to  -mixing, but both are quite different.   k  is defined by (1.1) with index sets restricted to subsets S of   1,n T and subsets of   , , , n k n k N   . On the other hand,   -mixing sequen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1985

ISSN: 0091-1798

DOI: 10.1214/aop/1176992812